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Introduction
Obesity is a serious and complex disease worldwide[1–3].  Body 
mass index (BMI), defined as weight in kilograms divided by 
the square of height in meters, is a WHO standard index for 
obesity.  BMI is under strong genetic determination with heri-
tability ranging from 20% to 90%[4–8].  Although genetic fac-
tors have a clear role in determining BMI variations, the most 
substantial genes underlying the variation of BMI are not well 
identified[9].

The estrogen receptor α (ER-α) gene has been listed as one 
of 127 possible candidate genes associated with obesity[9].  Sev-
eral lines of recent evidence suggest a potential role for ER-α 
in the determination of BMI.  ER-α may play a critical role in 
adipose tissue development, metabolism, deposi tion[10, 11] and 
energy metabolism[12].  The estrogen antagonist acting on ER-α 

can prevent diet- and ovariectomy-induced obesity, mainly 
by decreasing fat deposition[13].  Higher ER-α expression in 
adipose tissue was observed among obese postmenopausal 
women[14].  The ratio of ER-α to ER-β in adipose tissue was 
associated with obesity in both pre- and postmenopausal 
women[15].  Male ER-α knockout mice have previously been 
reported to develop obesity after sexual maturity[16, 17].  Addi-
tionally, ER-α levels were associated with BMI in breast cancer 
patients[18].  ER and progesterone receptor status was used 
to define breast cancer risk factors[19].  Polymorphisms in the 
ER-α gene have been reported to be associated with BMI, 
though contradictory results were also reported[20–27].  

Osteocalcin, also called bone Gla protein (BGP), is an 
osteoblast-specific protein that is known to play a role in 
bone growth and has recently been reported to function as 
a new metabolic hormone regulating the adiposity and glu-
cose homeostasis in experimental animals[28–30].  Osteocalcin 
increases adiponectin and insulin expression in adipocytes and 
β-cells, respectively.  Osteocalcin-deficient mice also display 
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obesity[28].  Osteocalcin was suggested to be the only molecule 
made by osteoblasts that accounts for the osteoblast-mediated 
regulation of glucose metabolism[31].  Serum osteocalcin levels 
were associated with BMI, glucose metabolism and body fat in 
several clinical studies[29, 32–35].  

Due to the importance of ER-α and BGP genes in regula-
tion of adiposity and glucose homeostasis, we hypothesized 
that genetic polymorphisms and potential interactions of the 
BGP and ER-α genes were associated with BMI.  The polymor-
phism of the PvuII site in the ER-α gene is the most extensively 
studied genetic marker in relation to BMI variation.  However, 
the results so far have been largely inconsistent and controver-
sial[20–27].  In addition, no data have been provided about the 
associations between BGP polymorphisms and BMI variation.  
The most frequently seen polymorphism in the BGP gene is 
HindIII, which is located in the promoter region.  BGP HindIII 
has been commonly applied in the study of complex traits[36–38].  
HindIII is, therefore, a possible genetic marker in the search for 
associations between the BGP gene and BMI variation.  Our 
study was designed to determine whether ER-α PvuII and 
BGP HindIII polymorphisms were associated with BMI varia-
tion and to test whether there was an effect of the interactions 
between the ER-α and BGP genotypes in determining BMI 
variation in a population of premenopausal Chinese women.

Materials and methods
Subjects
The study was approved by the Ethical Committee of Nan-
chang University and People’s Hospital of Jiangxi Province.  
The 328 subjects in this study were recruited from a local 
population of Nanchang City in east China.  They were all 
of the Han ethnic, comprising greater than 93% of the total 
Chinese population.  Subjects with diseases, treatments, or 
conditions that would have an apparent influence on health 
or contribution to abnormal obesity were excluded.  Informed 
consent was obtained from each subject.  For all subjects, a 
detailed medical history, including menstrual history, was 
recorded by nurse-administered questionnaires.  Information 
on female history including age at menarche and menopause, 
years since menopause, and number of births was collected.  
Physical activity and smoking history were also documented.  
The subjects were unrelated, healthy, non-smoking and pre-
menopausal women.  Body weight was measured to the near-
est 0.01 kg using a digital scale, height was measured to the 
nearest 0.1 cm using a wall-mounted stadiometer, and BMI 
was calculated as weight (kg) divided by height squared (m2).  

Genotyping 
Genomic DNA was isolated from whole blood using the phe-
nol-chloroform extraction method[39].  All subjects were geno-
typed by polymerase chain reaction followed by restriction 
fragment length polymorphism analysis (PCR-RFLP).  Figure 
1 shows the structure of the ER-α and BGP genes and the loca-
tions of the studied polymorphisms in the two genes.  The 
ER-α gene is located on chromosome 6q25 and is composed 
of 8 exons and 7 introns.  The polymorphism of ER-α PvuII is 

a C/T single nucleotide polymorphism (SNP) in intron 1 of 
the ER-α gene.  The forward primer (5’-CTG CCA CCC TAT 
CTG TAT CTT TTC CTA TTC ACC-3’) and reverse primer (5’-
TCT TTC TCT GCC ACC CTG GCG TCG ATT ATC TGA-3’) 
were used to amplify a 1.3 kb DNA fragment in intron 1 by 
previously described amplification conditions[40].  The BGP 
gene is located on chromosome 1q25-q31 and is composed of 
4 exons and 3 introns.  The polymorphism of BGP HindIII is 
a C/T SNP located in the promoter region of the BGP gene at 
the 198th nucleotide upstream from exon 1.  For the HindIII 
polymorphism of the BGP gene, a 253 bp DNA fragment was 
produced using the forward primer (5’-CCG CAG CTC CCA 
ACC ACA ATA AGC T-3’) and the reverse primer (5’-CAA 
TAG GGC GAG GAG T-3’) by previously described ampli-
fication conditions[36].  After amplification, 8 μL of the PCR 
products was digested with the respective restriction endonu-
cleases, PvuII and HindIII (Promega Corp, Madison, WI, USA), 
at 65 °C for 4 h, electrophoresed on a 2% agarose gel in 1×TAE 
buffer, stained with ethidium bromide, and visualized under 
UV light.  The genotypes were designated as PP, Pp, and pp 
for PvuII and HH, Hh, and hh for HindIII.  Uppercase and low-
ercase letters represent the absence and presence of the restric-
tion sites, respectively.

Statistical analyses
All statistical analyses were conducted using SAS version 6.12 
(SAS Institute, Cary, NC, USA).  The χ2 test was performed to 
examine Hardy-Weinberg equilibrium (HWE) at the studied 
marker loci, medical histories, genotype distributions of ER-α 
PvuII and BGP HindIII polymorphisms, and associations with 
BMI.  The phenotypic values were evaluated for the presence 
of a normal distribution by the Shapiro-Wilk test.  Bartlett’s 
tests were performed to test the homogeneity of variances in 
BMI between each BGP HindIII and ER-α PvuII genotype.  Lin-
ear regression analyses were performed to test the impact of 
medical history on BMI variation.  The analysis of covariance 
(ANCOVA) was used to evaluate the relationship between 
BMI and each of the ER-α and BGP genetic polymorphisms.  
The frequency of the HH genotype in the BGP gene was low 

Figure 1.  The structure of the ER-α and BGP genes and the locations of 
the studied polymorphisms in the two genes.  Exons are depicted as filled 
boxes and introns as single lines between filled boxes.
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in our subjects (7.93%).  When the subjects were divided into 
three groups, HH, Hh and hh, the sample sizes were too small 
to analyze the effect of the polymorphism interaction appro-
priately.  Therefore, the subjects were divided into two groups, 
those with and without the minor allele, H.  To analyze the 
effect of a special ER-α allele, the subjects with this allele 
were identified as “1” and those without it were identified as 
“0”.  ANCOVA was used to test for the effect of a given ER-α 
gene allele associated with the special BGP genotype.  When 
a significant result was observed, it was interpreted as an 
interaction between the ER-α and BGP genes.  To avoid errors 
resulting from multiple-testing, Bonferroni corrections were 
applied to establish an empirical threshold which requires 
that individual tests have P-values <0.013 in order to achieve a 
global significance level of 0.05 for association and interaction 
analyses in the present study.

Results
Descriptive characteristics of the study subjects
The basic characteristics of the 328 unrelated premenopausal 
women are summarized in Table 1.  The ER-α PvuII allele fre-
quencies were 38.6% for P and 61.4% for p and the BGP Hin-
dIII allele frequencies were 28.2% for H and 71.8% for h.  The 
PvuII polymorphism of ER-α and the HindIII polymorphism of 
BGP were in HWE (P>0.05).  Medical histories and genotype 
distributions of ER-α PvuII and BGP HindIII polymorphisms 
associated with BMI are listed in Table 2.  Linear regression 
analyses indicated that only age had a significant impact on 
BMI variation among all the medical history (data not shown) 
and, thus, age was used to adjust BMI in association and inter-
action analyses.

Association of the ER-α and BGP genes with BMI 
The analyses did not reveal any significant violations of the 
assumptions of ANCOVA.  For example, the P value was 0.203 
for Bartlett’s test for homogeneity of variances of BMI among 
the three BGP HindIII genotypes.  The associations between 
ER-α and BGP with BMI variation are summarized in Table 
3.  Our analysis revealed a significant association between the 
BGP HindIII polymorphism and BMI (P=0.003).  In our study 
subjects, individuals with the HH genotype had the highest 
BMI (21.81±0.73 kg/m2), individuals with the Hh genotype 

had intermediate BMI (21.50±0.53 kg/m2), and individuals 
with the hh genotype had the lowest BMI (21.23±0.63 kg/
m2), on average.  Therefore, carriers of HH and Hh genotypes 
had approximately 2.73% and 1.27% higher BMI, respectively, 
than those with the hh genotype.  We did not observe a sig-
nificant association between the ER-α PvuII polymorphism 
and BMI (P=0.454).  In addition, the effect of the interactions 
between the ER-α PvuII and BGP HindIII polymorphisms on 
BMI is listed in Table 4.  We show that, with the P values of 
0.017, 0.015, 0.020, and 0.015, the interactions between a given 
ER-α gene allele and the special BGP genotype did not have 

Table 1.  Basic characteristics of the subjects.  n=328.

                                 Age    Height             Weight     BMI
             (years)      (m)               (kg)   (kg/m2)                                  
 
 Mean 33.2 1.568 55.11 21.58
 SD   5.9 0.052   8.02   2.95
 Min 21.3 1.450 39.00 16.24
 Max 38.7 1.725 87.00 30.96

Note: Mean, SD, Min, and Max denote the mean, standard deviation, 
minimum and maximum values, respectively.  BMI values are unadjusted 
raw data.

Table 2.  Medical history and genotype distributions of ER-α PvuII and BGP 
HindIII polymorphisms associated with BMI.

                                                                  BMI (kg/m2) 
               Normal (<25)     Overweight (≥25)    P value 
                                                       n=290                  n=38 
 
 Age at menarche   13.65 13.42 >0.05
 Number of births     0.57   0.58 >0.05
 Exercise (%)   >0.05
 Rarely/never   45.6 46.7
     <1/week   19.1 18.2
     1–3/week   24.6 26.0
     ≥4/week   10.7   9.1
 ER-α PvuII     0.001
     PP   37 11 
     Pp 137 20 
     pp 116   7 
 BGP HindIII     0.01
     HH   23   3 
       Hh 121 12 
     hh 146 23 

Note:
1. Three subjects (30<BMI<31) in our population were classified as 
overweight.
2. The P values were obtained from t-tests for continuous variables and χ2 
for categorical variables.
3. ‘n’ denotes the sample sizes of the normal and overweight groups. 

Table 3.  Association analyses for the ER-α PvuII and BGP HindIII polymor-
phisms and BMI.  

      Marker    Genotypes                 BMI (kg/m2)               P value
 
 ER-α-PvuII PP (48) 21.65±0.58 0.454
  Pp (157) 21.63±0.62 
  pp (123) 21.52±0.57 
   
 BGP-HindIII HH (26) 21.81±0.73 0.003
  Hh (133) 21.50±0.53 
  hh (169) 21.23±0.63 

Note:
1.  The BMI values are displayed as mean±SD of BMI adjusted for age.
2.  The values in parentheses are the number of genotypes for each marker. 
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significant effects on BMI values (Table 4).  Thus, there was no 
evidence of potential interactions between the ER-α and BGP 
genes in our subjects (P≥0.013).

Discussion
In a population of healthy premenopausal Chinese Han 
women, we showed that the HindIII polymorphism of the BGP 
gene, but not the PvuII polymorphism of the ER-α gene or 
their potential interaction, was associated with BMI.  

A number of studies have shown that BGP plays an 
important role in obesity.  However, no information regard-
ing the role of BGP polymorphisms in BMI variation is 
avail able[28, 29, 31].  With an attempt to disclose the effect of BGP 
on BMI, we performed an association analysis of the BGP gene 
and BMI in a cohort of Chinese premenopausal women.  The 
results suggest that the BGP HindIII polymorphism is signifi-
cantly associated with BMI in our subjects.  Considering that 
the effect of BGP HindIII on BMI may vary between different 
populations, the effect observed here has yet to be confirmed 
by separate analyses in different populations or ethnic groups.

Recent studies of the association between the ER-α gene 
polymorphism and BMI have yielded conflicting results[20–27].  
Our results are inconsistent with the previous findings in 
non-Chinese populations, indicating significant associations 
between the ER-α gene and BMI variation in postmenopausal 
Caucasian women[20], middle-aged Japanese women[22], post-
menopausal white women[21], African-American families[24], 
Brazilian subjects[25], and men from the Framingham Heart 
Study[23].  However, our findings are consistent with the two 
previous studies performed on Chinese females[26, 27] and a 
study in women from the Framingham Heart Study showing 

no effect of the ER-α gene on BMI variation[23].  The discrep-
ancies between our study and the other study[23] may be due, 
partially, to ethnic differences, which may account for the dif-
ference in pathogenesis of BMI variation at genetic levels in 
different ethnic groups.  Thus, testing the candidate gene(s) in 
different populations or ethnic groups is necessary to interpret 
the peculiar role of the candidate gene(s) in those popula-
tions.  Additionally, differences in study subjects may partially 
account for the contradictory results.  In the present study, the 
subjects were all premenopausal women, whereas in the Cau-
casian study[20, 21], subjects were all postmenopausal women.  
The effect of the ER-α genotype might vary between different 
periods of a woman’s life.  

It has been suggested that GXG (gene-by-gene) interactions 
are a ubiquitous phenomenon in the genetic control of com-
plex traits[41, 42].  BMI is a complex trait determined by indi-
vidual genes as well as their potential interactions.  Substantial 
evidence indicates the ER-α and BGP genes may interact with 
each other to affect the BMI variation from a physiological 
point of view.  Ovariectomy up-regulates and estrogen admin-
istration down-regulates the gene expression of osteocalcin 
in cancellous bone[43], bone marrow mesenchymal stem cells 
(MSCs) exposed to osteogenic differentiation medium[44], 
and periosteal cells in the long bones of rats[45].  Addition-
ally, serum levels of osteocalcin were significantly elevated in 
ovariectomized animals compared to intact animals and were 
reduced by E2 and the ER-α agonist[46, 47].  Intrigued by these 
findings, we offer insight into the relationship between the 
ER-α and BGP polymorphism interaction and BMI.  Although 
no evidence of potential interaction between the ER-α and 
BGP genes in determining BMI was observed in our subjects, 
the present study represents our efforts to detect and charac-
terize potential GXG effects that determine the genetic contri-
bution to BMI variation that could not be derived from ana-
lyzing the individual polymorphisms.  Most of the previous 
genetic studies have focused on the effects of individual genes 
on BMI[20–27] irrespective of the effects of interactions among 
multiple genes.  Further studies are required to evaluate and 
dissect the potential effects of gene interactions on BMI.

It should be noted that the present study has potential limi-
tations.  First, we did not completely assess all of the factors 
related to BMI.  Some potential confounding factors such as 
caloric intake and socioeconomic factors were not included.  
Second, only one genetic marker was analyzed in each gene 
in our study due to budget limitations.  Further studies exam-
ining additional SNP markers that span the entire ER-α and 
BGP genes are necessary to draw a definitive conclusion on 
the importance of the ER-α and BGP genes on BMI variation.  
Next, statistical significance was only observed in a small 
sample of premenopausal Chinese women.  The statistical 
power decreases considerably with the relatively small sample 
size.  Finally, statistical significance was observed in a regular 
population association.  Further studies employing robust 
approaches unaffected by population admixture, such as the 
transmission-disequilibrium test (TDT)[48], are required to con-
firm our finding.  Despite these drawbacks, the current results 

Table 4.  Effects of interaction between the ER-α PvuII and BGP HindIII 
genes on BMI.

                                                                           BGP HindIII
                                              A                                 B 
 
 ER-α PvuII   
 P allele 1 21.74±0.90 (99) 21.30±0.80 (106)
  0 20.65±0.88 (60) 20.24±0.85 (63)
  P value        0.017      0.015
   
 p allele 1 21.03±0.79 (130) 20.55±0.59 (150)
  0 22.36±0.71 (29) 22.07±0.43 (19)
  P value        0.020      0.015 

Note:
1.  All data are displayed as mean±SD of BMI values adjusted for age.  
2.  The values in parentheses indicate sample size.  
3.  “1” denotes carriers and “0” denotes non-carriers of the corresponding 
ER-α PvuII allele.
4.  “A” denotes the subjects with allele H (the HH and Hh genotypes) at 
the BGP HindIII locus and “B” denotes the subjects without allele H (the 
hh genotype) at the BGP HindIII locus.
5.  P values were calculated by ANCOVA. 
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confirm findings of previous studies.  Thus, our study is valid 
in terms of revealing potentially important associations that 
warrant additional investigation.

In conclusion, we show the HindIII polymorphism of the 
BGP gene, but not the PvuII polymorphism of the ER-α gene 
or their potential interaction was associated with BMI in pre-
menopausal Chinese women.  The present study represents 
the first effort to simultaneously investigate the individual 
effects of the ER-α and BGP genes as well as their potential 
interactions on BMI variation with an attempt to completely 
understand the genetic effect underlying BMI.  The statistical 
significance provides confirmation for the need for functional 
studies on molecular and cellular levels.  Further studies in 
other populations with larger sample sizes and denser mark-
ers are required to confirm the findings reported here.
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